
Debate: surveillance is a waste of time and resource (Against)

Prof Pete Holt

St George's Vascular Institute, London

Key issues in post-EVAR surveillance

≻Cost

- Direct & resource use

≻Effectiveness

- Clinical & cost

≻Delivery

Compliance, Access, Acceptability,
 Patient Education

≻Modality

- Time, Cost, Risk to patient, Diagnostic accuracy

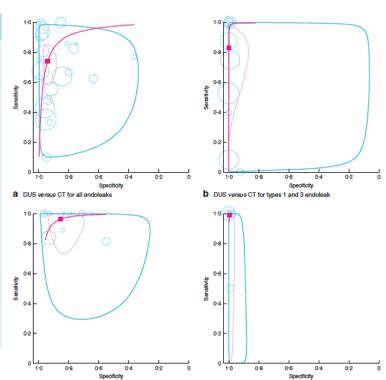
- ➤Interval presentations
- **≻**Opponent

<u>Duplex ultrasound and contrast-enhanced ultrasound versus computed tomography for the detection of endoleak after EVAR: systematic review and bivariate meta-analysis.</u>

Mirza TA, Karthikesalingam A, Jackson D, Walsh SR, Holt PJ, Hayes PD, Boyle JR. Eur J Vasc Endovasc Surg. 2010 Apr;39(4):418-28. doi: 10.1016/j.ejvs.2010.01.001. Epub 2010 Feb 1. Review.

PMID: 20122853 Free Article

Systematic review and meta-analysis of duplex ultrasonography, contrast-enhanced ultrasonography or computed tomography for surveillance after endovascular aneurysm repair.


Karthikesalingam A, Al-Jundi W, Jackson D, Boyle JR, Beard JD, Holt PJ, Thompson MM. Br J Surg. 2012 Nov;99(11):1514-23. doi: 10.1002/bjs.8873. Epub 2012 Sep 21. Review.

PMID: 23001681

Reference	Paired scans	CT+ DUS+	CT+ DUS-	CT- DUS+	CT- DUS-	CT+ CEUS+	CT+ CEUS-	CT- CEUS+	CT- CEUS-	
Hellberger et al.46 (1997)	34	8	1	0	25	8	1	4	21	
Sato et al.57 (1998)	117	33	7	18	59	-	_	-	-	
Thompson et al.59 (1998)	20	4	0	0	16	-	-	-	-	
Wolf et al.60 (2000)	166	51	12	3	100	-	-	-	-	
Zannetti et al. ⁶¹ (2000)	198	11	1	3	183	-	_	-	-	
d'Audiffret et al.42 (2001)	211	31	1	4	175	-	-	-	-	
Pages et al.53 (2001)	109	14	15	5	75	-	-	-	-	
Greenfield et al.45 (2002)	11	6	1	1	3	-	-	-	-	
Golzarian et al.44 (2002)	53	17	5	3	25	-	-	-	-	
McLafferty et al.49 (2002)	76	7	0	1	68	-	-	-	-	
McWillams et al.50 (2002)	96	2	18	4	72	-	-	-	-	
Parent et al.54 (2002)	141	18	0	18	105	-	-	-	-	
Bendick et al. 39 (2003)	20	6	2	0	12	8	0	2	10	
Giannoni et al.43 (2003)	81	5	3	0	73	8	0	21	52	
Raman et al.55 (2003)	494	21	28	18	427	-	-	-	-	
AbuRahma et al.38 (2005)	367	23	11	4	329	-	-	-	-	
Ashoke et al.14 CXH (2005)	66	4	2	12	48	-	-	-	-	
Ashoke et al.14 STGH (2005)	23	6	1	3	13	-	-	-	-	
Sandford et al.56 (2006)	244	15	12	18	199	-	-	-	-	
Henao et al.47 (2006)	20	3	3	1	13	6	0	3	11	
Nerlekar et al.52 (2006)	233	27	2	6	208	-	-	-	-	
Collins et al.41 (2007)	35	10	3	14	8	-	-	-	-	
Clevert et al.40 (2008)	43	5	10	2	26	15	0	2	26	
lezzi et al.48 (2009)	84	25	15	16	28	39	1	8	36	
Nagre et al.51 (2011)	561	54	100	19	388	-	-	-	-	
Schmieder et al.58 (2009)	472	48	27	62	335	-	-	-	-	
McWillams et al. [©] (1999)	20	-	-	-	-	3	0	6	11	
Glannoni et al.19 (2007)	29	-	-	-	-	7	0	1	21	
Ten Bosch et al.24 (2010)	127	-	-	-	-	22	5	45	55	
Cantisani et al.23 (2011)	108	-	-	-	-	20	0	3	85	
Perini et al.25 (2011)	395	-	_	-	_	83	16	20	276	

"Surveillance remains mandatory post-EVAR

CEUS would have greater cost implications than DUS...

CEUS therefore cannot be recommended...

DUS performs equivalently to CT with 30% cost reduction, no nephrotoxicity and no radiation"

d CEUS versus CT for types 1 and 3 endoleak

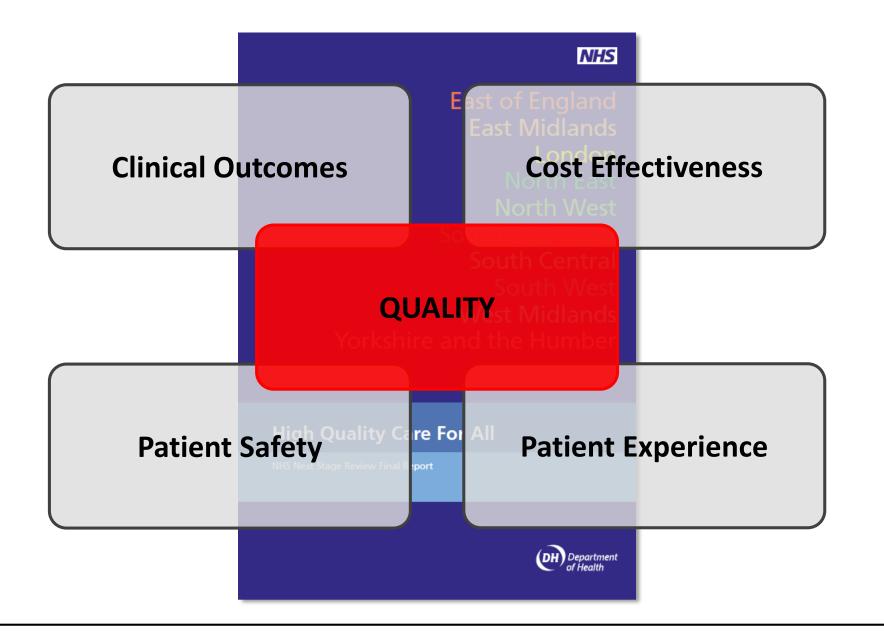
Cost-effectiveness analysis of endovascular versus open surgical repair of aneurysms based on worldwide experience.

Hayes PD¹, Sadat U, Walsh SR, Noorani A, Tang TY, Bowden DJ, Gillard JH, Boyle JR.

CONCLUSION: While the UK's National Institute for Clinical Excellence does not set an absolute limit at which treatments would not be funded, pound30,000 (\$45,000) is generally regarded as the upper limit of acceptability. At this level, there is almost a 100% probability that EVAR is a cost-effective treatment.

Br J Surg. 2014 Feb;101(3):225-31. doi: 10.1002/bjs.9409.

Mid-term cost-effectiveness analysis of open and endovascular repair for ruptured abdominal aortic aneurysm.

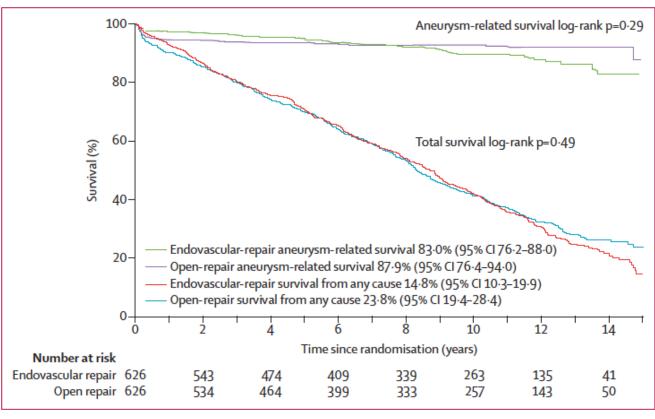

Rollins KE¹, Shak J, Ambler GK, Tang TY, Hayes PD, Boyle JR.

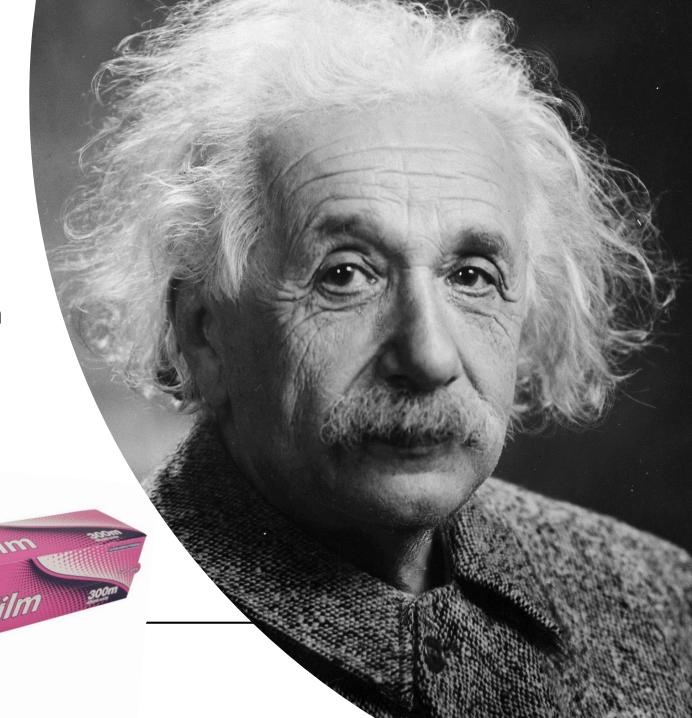
CONCLUSION: There was no significant difference in reintervention rates after EVAR or open repair for rAAA. EVAR was as cost-effective at mid-term follow-up. The increased procedural costs of open repair are not outweighed by greater surveillance and reintervention costs after EVAR.

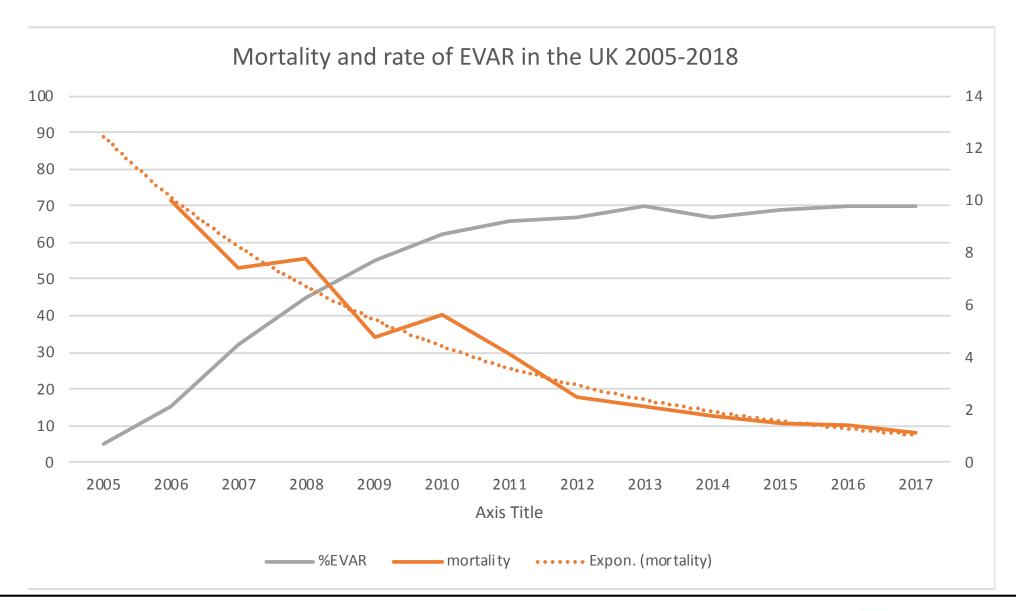
"...a 100% probability that EVAR is a cost-effective treatment"

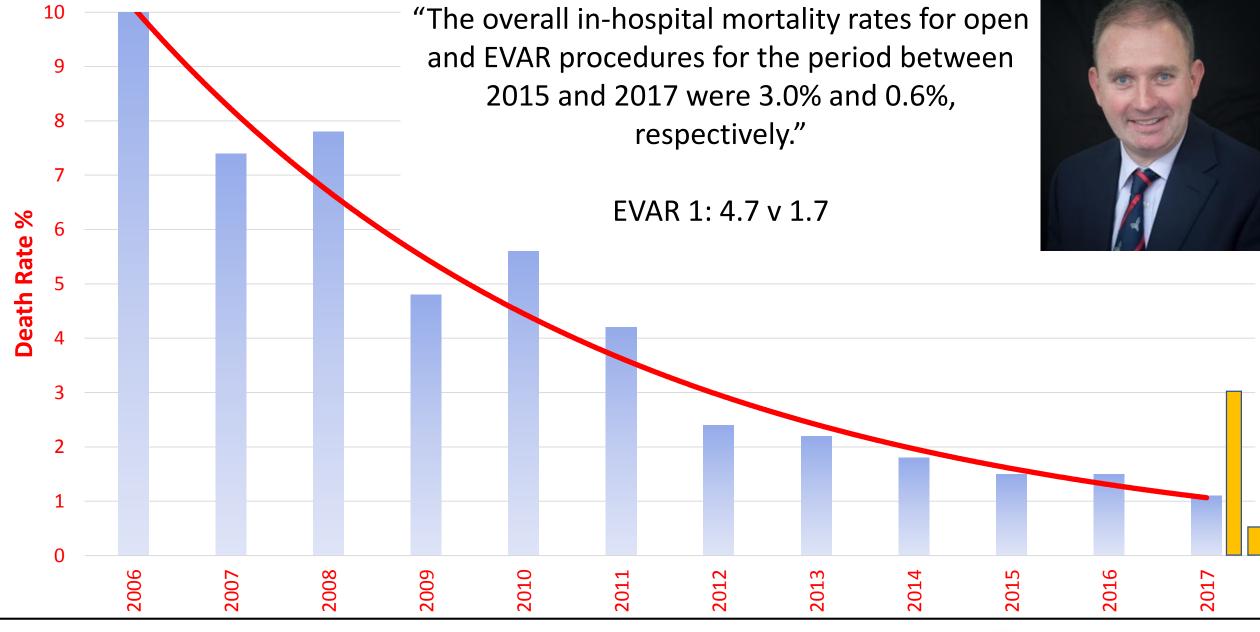
"The increased procedural costs of open repair are NOT outweighed by greater surveillance & reintervention costs after EVAR"

National Institute for poorly informed decisions, Health care rationing and supporting overt bias





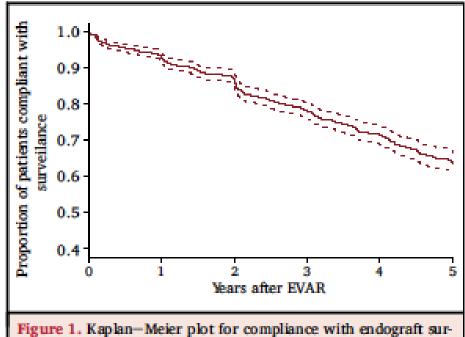
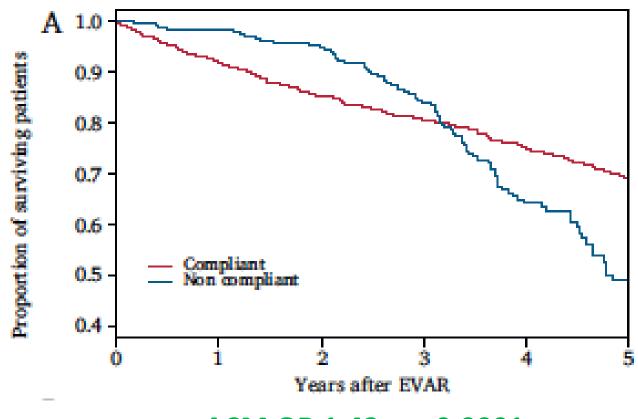

Figure 2: Kaplan-Meier estimates for total survival and aneurysm-related survival up to 15 years of follow-up The hazard ratio is 1.05 (95% CI 0.92-1.19) for total mortality, and is 1.24 (0.84-1.83) for aneurysm-related mortality.

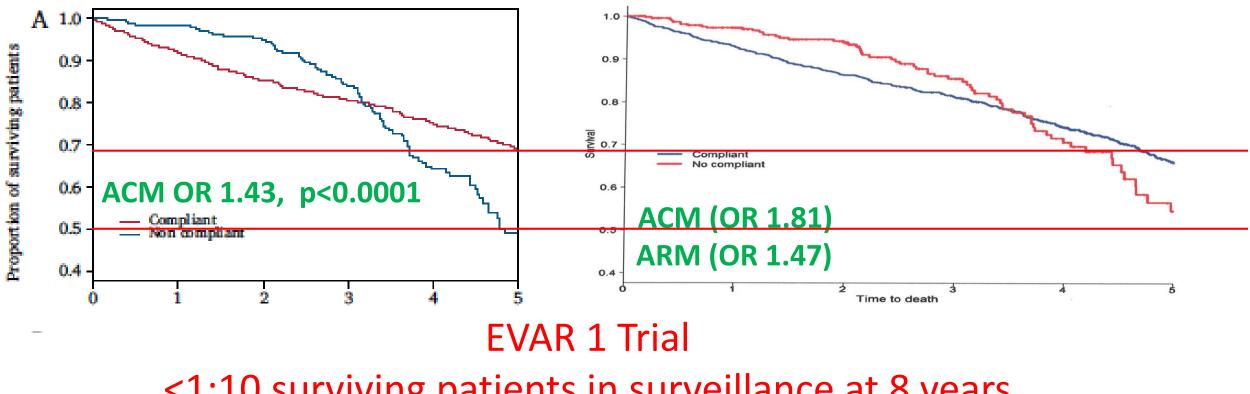

NON-CREDIBLE NOTICE NON-CREDIBLE

- ➤ Born 1879, Ulm, Germany
- ≥1948 admitted with abdominal pain
- ➤ "Grapefruit-sized" aortic aneurysm
- ➤ Wrapped anteriorly in cellophane
- ▶12 April 1955 readmitted with pain
- ➤ Died 0115, April 18, 1955 (aged 76)

Multicentre Post-EVAR Surveillance Evaluation Study (EVAR-SCREEN)

Matthew J. Grima a.b.*, Alan Karthikesalingam a, Peter J. Holt a, for the EVAR-SCREEN Collaborators


Figure 1. Kaplan—Meier plot for compliance with endograft surveillance, defined by attendance at surveillance imaging at least every 18 months or known to have left surveillance. EVAR = endovascular aneurysm repair.

ACM OR 1.43, p<0.0001

Failure of surveillance results in higher overall mortality and emphasises the importance of routine surveillance.

<1:10 surviving patients in surveillance at 8 years

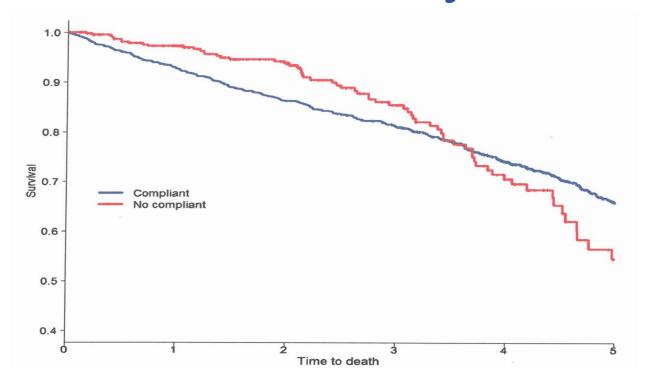
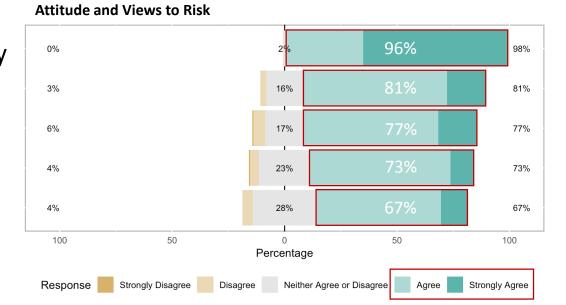
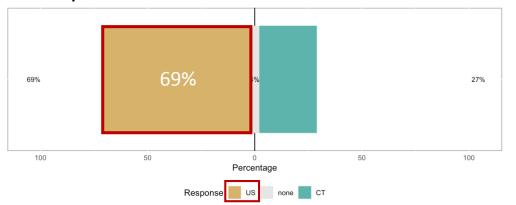

- Endovascular-repair aneurysm-related survival 83-0% (95% CI 76-2-88-0)
- Open-repair aneurysm-related survival 87.9% (95% CI76.4-94-0)
- Endovascular-repair survival from any cause 14.8% (95% CI 10-3-19-9)
- Open-repair survival from any cause 23-8% (95% CI 19-4-28-4)

Figure 2: Kaplan-Meier estimates for total survival and aneurysm-related survival up to 15 years of follow-up

The hazard ratio is 1.05 (95% CI 0.92–1.19) for total mortality, and is 1.24 (0.84–1.83) for aneurysm-related mortality.

EVAR SCREEN v. EVAR 1: Its not just about the op




Post-EVAR Patient Preference Study

- Surveillance is necessary
- High risk, more scans
- Pre-operative risk
- Low risk, less scans
- Personalised schedule based on risk

Ultrasound vs CT

Surveillance can be improved but saves lives

- ➤ Improve surveillance programmes
 - ➤ Define optimal intervals
 - Risk-based, dynamic& personalised surveillance
 - ➤ Delivery close to home
 - ➤ Reliable, safe, non-toxic, non-carcinogenic
- ➤ Investigate and rectify problems early
 - ➤ Sac size increase is pathological
 - ➤I/III Endoleaks are clinical urgencies

